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Abstract— This paper employs a reinforcement learning-
based model identification method aimed at enhancing the
accuracy of the dynamics for our snake robot, called COBRA.
Leveraging gradient information and iterative optimization, the
proposed approach refines the parameters of COBRA’s dynami-
cal model such as coefficient of friction and actuator parameters
using experimental and simulated data. Experimental validation
on the hardware platform demonstrates the efficacy of the
proposed approach, highlighting its potential to address sim-
to-real gap in robot implementation.

I. INTRODUCTION

Snake robots exhibit a multitude of actuated joints, en-
gaging in locomotion patterns involving intricate interactions
with the environment [1]. These systems present formidable
challenges in modeling and control due to the complex
interplay of unilateral contact forces, leading to intricate
complementarity conditions [2]. Traditional approaches have
previously tackled these force inclusion issues with promis-
ing outcomes [3], [4].

Recent advancements in learning methodologies offer
expedited solutions, circumventing the need for manually
tuned parameter sets and expanding beyond constrained or
supervised settings [5]–[9]. The models in these studies are
further simplified through various assumptions to minimize
the number of adjustable parameters. While these methods
eloquently showcase how neural modulations can give rise
to diverse locomotion strategies [10]–[14], there remains
limited exploration on extending these models to actively
utilize high-dimensional complex observations from onboard
sensors to modulate actuators.

This paper addresses the ”sim-to-real problem” encoun-
tered in the COBRA snake robot [15]–[17], as depicted in
Fig. 1, where substantial disparities in joint angle trajectories
and final head positions emerge between the physical robot
and its mathematical model. COBRA is capable of executing
programmed 3D interactions with the environment surface.

Driven by the necessity to refine the accuracy of COBRA’s
locomotion model for effective policy transfer, we employ
the Proximal Policy Optimization (PPO) algorithm [18] to
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Fig. 1. Illustrates COBRA platform while performing sidewinding over
flat ground.

Fig. 2. Shows free-body-diagram of COBRA and model parameters
unknown to us and found as part of this work.

determine model parameters, encompassing inertial terms,
friction coefficients, and unknown actuator parameters, to
synchronize the model’s behavior with the hardware platform
during predefined locomotion patterns.

Our proposed reinforcement learning-based approach aims
to bridge the simulation-reality gap, enhancing predictive
accuracy and facilitating the transfer of acquired control
policies. This research significantly advances snake robot
locomotion by addressing the challenges of sim-to-real dis-
parities, thereby contributing to the formulation of robust and
adaptable control strategies in complex environments.

A. Quick Overview of COBRA

COBRA, an acronym for Crater Observing Bio-inspired
Rolling Articulator, is a snake robot designed after the
intricate locomotion of serpentine creatures. This robot is
specifically engineered to navigate and endure rugged ter-
rains and environments, such as craters, where traditional
wheeled or legged robots may struggle [19]–[21].

Comprising 11 articulated joints, COBRA exhibits flexi-
bility and fluidity in its movements, enabling it to perform
a variety of maneuvers, including sidewinding or forming
a loop-shape configuration for tumbling. Each module in



COBRA emboides a LIPO battery, an actuator and a mi-
croprocessor. The modules are connected to each other in a
daisy chain. The COBRA robot is equipped with a C++ API
that controls a series of Dynamixel servos.

The paper’s structure is as follows. We go over the dy-
namics of Cobra in Section II, then present the reinforcement
learning framework used to identify unknown parameters in
the model in Section III. Finally, we present results showing
the change in performance of the model after training and
quantify the improvements made.

II. COBRA FULL-DYNAMICS

The dynamical equations of motion of COBRA is given
by[

DH DHa

DaH Da

] [
q̈H
q̈a

]
+

[
HH

Ha

]
=

[
0
Ba

]
u+

+

[
J⊤
H

J⊤
a

]
FGRF

(1)

where Di, Hi, Bi, and Ji are partitioned model [22]–[24]
parameters corresponding to the head ’H’ and actuated ’a’
joints. FGRF denotes the ground reaction forces. u embodies
the joint actuation torques. The model considered for actu-
ators is adopted from M. Spong’s book [25]. The actuator
parameters include: transmission inertia, internal damping,
and dc motor constant. The reference trajectories used in the
actuator models are generated by

y(t) = A sin(ωt+ ϕ) (2)

where A is the amplitude, ω is the frequency, and ϕ is the
phase difference of the signal respectively.

The ground model [26]–[29] used in our simulations is
given by

FGRF =

{
0 if pC,z > 0

[FGRF,x, FGRF,y, FGRF,z]
⊤ else

(3)

where pC,i, i = x, y, z are the x − y − z positions of
the contact point; FGRF,i, i = x, y, z are the x − y − z
components of the ground reaction force assuming a contact
takes place between the robot and the ground substrate. In
Eq. 3, the force terms are given by

FGRF,z = −k1pC,z − k2ṗC,z, (4)

FGRF,i = −siFGRF,z sgn(ṗC,i)− µvṗC,i if i = x, y (5)

In Eqs. 4 and 5, k1 and k2 are the spring and damping
coefficients of the compliant surface model. In Eq. 5, the
term si is given by

si =
(
µc − (µc − µs)exp

(
−|ṗC,i|2/v2s

) )
(6)

where µc, µs, and µv are the Coulomb, static, and viscous
friction coefficients; and, vs > 0 is the Stribeck velocity.
Specifically speaking, from Eqs. 1 and 3, the following
parameters are unknown to us: actuator models parameters
and Stribeck terms.

In Section. III, we will use RL to obtain these unknown
parameters. The unknown model parameters are encoded
within the simulator as part of sim-to-real gap research.

Fig. 3. Highlights a significant disparity between the behaviors of COBRA
in experiments and simulations. The paper’s primary contribution lies in
aligning the dynamic behavior of COBRA across both simulation and real-
world experiments.

Fig. 4. Reinforcement Learning-guided model identification setup used in
this work.

A. Selection of Simulator

To provide a good starting point for the model matching,
the right simulator must be selected. Simulators such as
Matlab Simscape, Drake and MuJoCo are commonly used
for simulating dynamics, and others such as Gazebo are
more suited for high level perception and navigation tasks.
In this work, Webots is chosen for its robust physics simula-
tion capabilities and adaptability to multi-degree-of-freedom
robot locomotion complexities, as well as the ability to easily
add several sensing modalities for training a closed loop
locomotion policy in the future. Developed by Cyberbotics,
Webots offers a realistic and dynamic simulation environ-



Fig. 5. Illustrates a comparison between the head positions in the actual hardware platform (blue), tuned model (orange) and untuned model (red) for a
sidewinding trajectory 0.35, 0.5, and 0.65 Hz.

ment, accurately modeling interactions between the COBRA
snake robot and its surroundings. Its physics engine enables
precise evaluation of robot behavior while executing prede-
fined trajectories. Webots also has a user-friendly interface
and extensive documentation, and is a popular choice in the
RL community for its ability to change model parameters
programmatically with ease, enabling encoding unknown
model parameters for Learning applications.

III. REINFORCEMENT LEARNING-GUIDED
IDENTIFICATION OF ACTUATOR AND STRIBECK

PARAMETERS

A. Urgency

Figure. 3 illustrates the behavior gap between the hardware
platform and mathematical model. The sim-to-real problem
in COBRA locomotion manifests as variations in final head
positions between the simulated robot and its physical coun-
terpart when exactly the same joint motions are commanded
in both models. These disparities hinder the seamless transfer
of control policies developed in simulation to the real robot,
limiting the effectiveness of learned behaviors in practical
applications. Hence, addressing the sim-to-real issue is cru-
cial for ensuring the reliability and robustness of COBRA
when deployed in diverse and dynamic environments.

B. Approach

Our methodology provides a structured approach to bridg-
ing the sim-to-real gap for the COBRA robotic system. We
combine physical hardware, a virtual simulation environ-
ment, and a reinforcement learning framework to iteratively
refine the fidelity of the simulation, thereby ensuring that it
mirrors the real-world performance of the robot as closely
as possible.

The simulation of the COBRA robot is conducted within
Webots, which incorporates an ODE physics engine to repro-
duce the dynamics of robotic systems. The physics engine
takes into consideration the mechanical properties, such as

mass and friction, as well as the actuator models to simulate
the robot’s interaction with its environment.

C. Performance Comparison Based on Underactuated and
Actuted Dynamics from Eq. 1

A sidewinding trajectory command qr is employed to
guide both the real COBRA robot and its virtual model
through identical movements. The performance analysis oc-
curs in two separate domains as suggested by the partitioned
model in Eq. 1:

• Underactuated dynamics: The imposition of qr leads
to the head translations q̈H , which are underactuated.
Comparing the head’s position and orientation provides
a clear performance metric for discerning contact force
discrepancies (friction coefficients) between the physi-
cal robot and the simulation while completely excluding
actuator dynamics.

• Actuated dynamics: In addition to matching passive
dynamics models, we also address actuated dynamics,
specifically the joint angle trajectories q̈a in Eq. 1.
Aligning actuator models is crucial for evaluating the
precision of the robot’s movements. This comparison
can be accomplished by calculating the norm distance
of output joint motions between the physical robot and
the simulated model.

D. Reinforcement Learning Framework

The PPO algorithm is used to iteratively refine the model
parameters. This is done with the aim of minimizing the
observed discrepancies in the underactuated and actuated
dynamics between the model and the actual robot. Below,
we explain the state, action, and reward function defined for
the PPO algorithm.

1) State, Action, and Reward Definition: The state St

encapsulates the actuator parameters for internal tuning and
Steibek terms for external tuning. The actions At are the
modifications applied to these simulation parameters.



The reward function R is given by

Rexternal = −
√
((xdes − xactual)2 + (ydes − yactual)2) (7)

where xdes and ydes denote desired x- and y-positions of the
head module, respectively. xactual and yactual are the OptiTrack
data. And, Rinternal is given by

Rinternal =− (ϕdes − ϕactual)
2 − (ωdes − ωactual)

2

− (Ades −Aactual)
2

(8)

where ϕ, ω, and A are CPG variables. These reward functions
are crafted to penalize the deviation in both passive dynamics
and actuated dynamics. They are defined as the sum of the
L2-norm of the joint angle trajectory differences and the L2-
norm of the final head position differences.

2) Policy Updates: The policy search recruited here op-
erates in a cycle of simulation runs and updates. During
simulation runs, the algorithms collects data on state tran-
sitions and rewards, which are aggregated into sequences
(St, At, Rt, St+1) and stored in a replay memory. The train-
ing phase involves updating the policy network with this data,
where PPO adjusts the policy in a manner that maximizes the
cumulative reward while maintaining a degree of similarity
to the previous policy, using a mechanism known as clipping
to avoid drastic policy changes [18].

Through these iterative training cycles, PPO tunes the
model parameters to align the model performance with the
actual COBRA robot, following a predefined sidewinding
trajectory. The process continues until a convergence is
reached. The following is a line-by-line breakdown of the
search approach as reported in [18]:

a) Input: The algorithm starts with initial policy param-
eters θ0 and initial value function parameters ϕ0. These
parameters are what the algorithm will learn to adjust as
it interacts with the environment to improve its policy.

b) Collect Trajectories: A set of trajectories Dk is col-
lected by running the current policy π(θk) in the environ-
ment. A trajectory is a sequence of states, actions, and
rewards experienced by the agent.

c) Compute rewards-to-go: For each time step t, compute
the total expected rewards from that time step until the end
of the trajectory, denoted as Rt. This is used to estimate how
good it is to be in a particular state.

d) Compute advantage estimates: The advantage At indi-
cates how much better or worse an action is compared to the
average action in a given state. This is calculated using the
value function Vϕ and the rewards-to-go.

e) Update the Policy: First, we calculate the probability
ratio, which is a fraction where the numerator is the prob-
ability of taking action at in state st under the new policy
πθ, and the denominator is the probability of taking action
at in state st under the old policy πθold :

ratio(θ) =
πθ(at|st)
πθold(at|st)

This ratio measures how the new policy differs from the old
policy in terms of the likelihood of taking the same actions.

We then clip this ratio to be within a range of [1−ϵ, 1+ϵ],
where ϵ is a hyperparameter typically set to a small value
like 0.1 or 0.2. This clipping limits the amount by which
the new policy can differ from the old one, regardless of the
advantage estimate:

clipped(θ) = clip(ratio(θ), 1− ϵ, 1 + ϵ)

The objective function incorporates the clipped ratio and
the advantage function At. It takes the minimum of the
unclipped and clipped objectives, ensuring that the final
objective doesn’t take too large of a step (hence, ”clipping”):

L(θ) = min (ratio(θ)At, clipped(θ)At)

The expectation of this objective function over all timesteps
and all trajectories is what the algorithm seeks to maximize.
This expectation is approximated by averaging over a finite
batch of timesteps and trajectories:

θk+1 = argmax
θ

(
1

|Dk|T
∑
τ∈Dk

T∑
t=0

L(θ)

)
Finally, the parameters of the policy θ are updated using
stochastic gradient ascent. This means we compute gradients
of the objective function with respect to the policy parameters
and adjust the parameters in the direction that increases the
objective:

θnew ← θold + α∇θ

(
1

|Dk|T
∑
τ∈Dk

T∑
t=0

L(θ)

)
where α is the learning rate.

The Adam optimizer is often used for this step because
it adapts the learning rate for each parameter, helps in
converging faster, and is more robust to the choice of
hyperparameters.

By maximizing this objective, PPO-Clip seeks to improve
the policy by making sure that the actions that would increase
the expected return are taken more frequently, while ensuring
that the policy does not change too drastically, which could
lead to poor performance due to overfitting to the current
batch of data.

IV. RESULTS

Experiments were performed on the real robot and motion
capture data for the precise trajectory of the head link, the
tail link, and the middle link was recorded. This is illustrated
in Fig. 6. In addition, joint trajectory data for all eleven
joints were recorded. Odd-numbered joints (1,3,5,...,11 from
the head) execute a pitching motion and even-numbered
joints (2,4,...,10 from the head) execute a yawing motion.
A sidewinding gait created by supplying a sinusoidal input
signal to each of the joints is used as a standard input with
varying parameters to change the behavior of the robot. The
input signal is given by a sine-wave according to Eq. 2 with
some phase difference for each joint, as follows:

Apitching = 14◦, Ayawing = 60◦



Fig. 6. Illustrates body positions (head module, link 6, and tail module)
during slithering towards the desired position on a flat ground collected
from the actual hardware platform using an OptiTrack system.

Fig. 7. Show COBRA in Webots simulator with tuned parameters
performing the sidewinding motion. The red ball shows the location the
actual robot achieved when similar joint trajectories were applied.

ϕ =
π

2
[0, 0, 1, 1, 2, 2, 3, 3, 0, 0, 1]

The frequency for this sine-wave input was varied for diver-
sity of data, creating three gaits with frequencies 0.35 Hz,
0.5 Hz, 0.65 Hz respectively. The recorded joint trajectories
for two joints performing the 0.5 Hz frequency input is
shown in Fig. 8. The actuators on the robot almost perfectly
track the desired input signal. A total of 25 experiments
were conducted, recording the robot moving from various
initial conditions for the given set of three gaits. The robot
performance was highly repeatable and one representative
sample was kept for validation while the remaining was used
for training of the simulation model.

Each of the three desired gaits was then executed in
simulation, matching the initial conditions of the robot to
reality for all training data. Fig. 3 presents snapshots that
illustrate the difference in the behavior of the robot in
simulation as compared to reality before tuning. The model
was then tuned by training using the framework presented in
Fig. 4. Fig. 9 shows the reward curve from tuning the internal
dynamics of the robot model. Fig. 7 presents snapshots of the
same experiment in simulation after tuning. The trajectory of
the head module is compared in Fig. 5, showing significant
improvements with the simulation matching the trajectory of
the real robot. The Euclidean distance between the reference
trajectory from the real robot and the trajectory from the
simulation is plotted in Fig. 10, showing that for all three

Fig. 8. Shows joint angles (e.g., joints 5 and 6) collected from the hardware
platform.

Fig. 9. Shows the training reward curve for tuning model parameters.

gaits, the error for the tuned model is lower. From this
figure, it may be observed that as the movement of the robot
becomes more aggressive (by increasing the frequency of the
input sine wave), the tuned model reduces in performance.
This is expected to some degree but can be mitigated by
increasing the diversity of training data to improve the
quality of the model. The performance is further inspected
at the joint level by comparing the joint trajectories of the
simulation model with the desired trajectories. Fig. 11 shows
the signal for two representative joints, with the tuned model
showing significantly closer tracking of the desired signal.
Fig. 12 tracks the overall performance of all joints using
sliding window correlation.

V. CONCLUSION

Despite limited training data, the framework has signifi-
cantly improved the ability of the simulation to predict the
behaviour of the robot. However, due to the limited training
data, the model shows a dropoff in accuracy when attempting
to generalize to more environments and types of inputs
as observed earlier. This may be solved by increasing the
diversity of training data. However, expanding the training set
using data from real hardware is expensive both in terms of
wear and tear to the robot and the time required for operation.
This is circularly related to the primary motivation behind
the presented work on model matching and underscores
the importance of these results. With the tuned model, a
locomotion policy trained in simulation has a higher chance
of success when transferred to the real robot, reducing
the sim-to-real gap. Demonstrating a successful sim-to-real



Fig. 10. Comparison of the Euclidean distance (error metric) between the
actual platform’s head position captured by OptiTrack and tuned/untuned
models for sidewinding @ 0.35, 0.5, and 0.65 Hz.

Fig. 11. Shows a comparison between the actuator joint responses from
the actual hardware platform (red), the tuned (blue) and untuned (magenta)
models for a sidewinding gait at @ 0.5 Hz.

transfer of locomotion policy will be presented in future
work.
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